Interior Modification of Nano-Porous Fillers to Fabricate High Performance Mixed Matrix Membranes

نویسندگان

  • A. Fauzi Ismail Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Malaysia
  • H. Sanaeepur Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran
  • S. Ramakrishna Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, 117576, Singapore
چکیده مقاله:

A new method is developed to enhance the gas separation properties of mixed matrix membranes (MMMs) by interior modification of an inorganic nano-porous particle. Ship-in-a-bottle (SIB), as a novel synthesis strategy, is considered to encapsulate a polyaza macrocyclic Ag-ligand complex into the zeolite Y, which is resulted in a new host-guest nano-composite. It is consequently incorporated into a glassy polymer matrix to fabricate a novel MMM for CO2 separation. Accordingly, cellulose acetate (CA) with relatively low gas permeability is selected as the membrane polymeric matrix to provide an appropriate opportunity for better tracking the effect of incorporating the new synthesized nano-porous hybrids. The results showed a promising increase in both the CO2 permeability (45.71%) and CO2/N2 selectivity (40.28%) of the prepared MMM over its pristine CA membrane. It can be concluded that the proposed method makes it possible to fabricate novel MMMs with significant intensification in performance of the current MMMs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Effective Permeability of Mixed Matrix Membranes

Mixed matrix membranes (MMMs) are attracting significant interest for pervaporation and gas separation applications. To better comprehend the impact of filler particles within polymer matrices, the species permeation mass transport was theoretically studied by numerical simulation using finite differences. The Fick’s second law of diffusion was solved for a three-dimensional MMM to obtain the c...

متن کامل

Finite element modeling of polymer matrix nano-composites reinforced by nano-cylindrical fillers

A new three-dimensional unit cell model has been developed for modeling three constituent phases including inclusion, interphase and matrix. The total elastic modulus of nano-composite is evaluated.  Numerical results are in good agreement with the previous proposed theoretical modeling. Higher matrix and inclusion elastic modulus both can dramatically influence the total elastic modulus.

متن کامل

Mixed matrix membranes prepared from high impact polystyrene with dispersed TiO2 nanoparticles for gas separation

The current study presents synthesis and characterization of high impact polystyrene - TiO2 nanoparticles mixed matrix membranes for separation of carbon dioxide from nitrogen. The solution-casting method was used for preparation of membranes. The nano mixed matrix membranes were characterized using scanning electron microscopy to ensure the suitable dispersion of nano particles in high impact ...

متن کامل

PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers.

High-free-volume glassy polymers, such as polymers of intrinsic microporosity (PIMs) and poly(trimethylsilylpropyne), have attracted attention as membrane materials due to their high permeability. However, loss of free volume over time, or aging, limits their applicability. Introduction of a secondary filler phase can reduce this aging but either cost or instability rules out scale up for many ...

متن کامل

Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation

Gas separation by selective transport through polymeric membranes is one of the fastest growing branches of membrane technology. However, the existing polymeric membrane materials are inadequate to fully exploit the application opportunities on industrial scale; the improvement in permeability is at the expense of selectivity, and vice versa. A new type of membrane material emerging with the po...

متن کامل

Finite element modeling of polymer matrix nano-composites reinforced by nano-cylindrical fillers

A new three-dimensional unit cell model has been developed for modeling three constituent phases including inclusion, interphase and matrix. The total elastic modulus of nano-composite is evaluated.  Numerical results are in good agreement with the previous proposed theoretical modeling. Higher matrix and inclusion elastic modulus both can dramatically influence the total elastic modulus.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 16  شماره 2

صفحات  70- 94

تاریخ انتشار 2019-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023